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We study the diffusion equation with a position-dependent, power-law diffusion coefficient. The equation
possesses the Riesz-Weyl fractional operator and includes a memory kernel. It is solved in the diffusion limit
of small wave numbers. Two kernels are considered in detail: the exponential kernel, for which the problem
resolves itself to the telegrapher’s equation, and the power-law one. The resulting distributions have the form
of the Lévy process for any kernel. The renormalized fractional moment is introduced to compare different
cases with respect to the diffusion properties of the system.
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I. INTRODUCTION

Diffusion processes are usually described in terms of ei-
ther differential or fractional equations which contain a con-
stant diffusion coefficient. In many physical problems, how-
ever, that coefficient depends on the position variable and
such dependence is important �1�. As a typical example can
serve the transport in porous, inhomogeneous media and in
plasmas. Modeling the aggregation of interacting particles
must take into account nonlocal effects, since the particle
mobility depends on the average density �2�: the coalescence
of particles results from long-range interactions �the Poisson-
Smoluchowski paradigm� and the corresponding evolution
equations contain a position-dependent coefficient. That
modeling can be accomplished directly, via the nonlocal
Fokker-Planck equation, in which the term with the space
derivative is multiplied by a kernel and integrated over the
position �3�. A similar method, applicable to the Lévy pro-
cesses, consists in the integrating over the Lévy index, with
some kernel �the distributed order space fractional equation�
�4�. The spatial inhomogeneity can be also taken into account
as an external potential which may substantially change the
diffusive properties of the stochastic system, in particular of
the Lévy flights �5�.

The Lévy distributions constitute the most general class of
stable processes and the Gaussian distribution is their special
case. One can expect that the Lévy �and non-Gaussian� dis-
tributions emerge in transport processes for which the ob-
servable values experience long jumps—e.g., due to the ex-
istence of long-range correlations. The theory of Lévy flights
is applicable to problems from various branches of science
and technology. Moreover, the handling of specific and real-
istic systems often requires taking into account both memory
effects and inhomogeneity of the media. As a typical ex-
ample of the nonhomogeneous problem can serve the diffu-
sion in the porous media, they often display fractal structure
and the diffusion on the macroscale and mesoscale can be
expressed by a stochastic equation driven by the Lévy pro-
cess �6�. In general, the transport in fractal media can be
described by the fractional Fokker-Planck equation with a
variable, position-dependent, diffusion coefficient �7–9�. The
Lévy flights bring about accelerated diffusion in the reaction-
diffusion systems �10�, and the probability distribution for
that process is expressed by the fractional Fisher-

Kolmogorov equation. The Lévy processes are typical for
problems of high complexity, in particular in biological sys-
tems �11� where fractal structures are also encountered. For
example, lipid diffusion in biomembranes has the character-
istics of the Lévy process but it can no longer be regarded as
Markovian. The theory of Nonnenmacher �12� takes into ac-
count memory effects, as well as the fractal structure of the
medium; the diffusion coefficient depends on the variable
diameter of the holes in the solvent through which the mol-
ecules jump. Application of the Lévy processes is natural
also in many social and environmental problems. Recently, it
has been established �13� that people mobility, estimated by
bank note circulation and studied in terms of stochastic frac-
tional equations, strongly depends on the geographical and
sociological conditions. Therefore, its study requires includ-
ing position-dependent quantities. That problem is directly
related to the spread of infectious diseases. It has been dem-
onstrated in the example of the SARS epidemic and by
means of percolation model simulations �14� that the disease
can spread very rapidly. Usually one assumes that the infec-
tion probability at a given distance is Lévy distributed due to
long-range interactions but the process is local in time �15�.
On the other hand, the percolation model of epidemics de-
veloped in Ref. �16� is restricted to short-range interactions
�is local in space� but it introduces incubation times which
obey Lévy statistics and then the model is non-Markovian.

In Refs. �17,18�, the master equation for a jumping pro-
cess, stationary and Markovian, has been studied. That pro-
cess is a version of the coupled continuous-time random
walk �CTRW�, defined in terms of two probability distribu-
tions: the Poissonian waiting time distribution with position-
dependent jumping frequency and a jump-size distribution.
The standard technique to handle such master equations is
the Kramers-Moyal expansion which produces the Fokker-
Planck equation for the Gaussian jumping size distribution
and it yields correct results for large times and large dis-
tances �19�. For the Lévy-distributed jumping size, the
Fokker-Planck equation becomes the fractional diffusion
equation, with the Riesz-Weyl fractional operator and the
variable coefficient D�x�. Formally, it can be derived from
the master equation by taking the Fourier transform and by
neglecting higher terms in the wave number expansion of the
jumping-size distribution �the diffusion approximation� �20�.
The equation reads
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�p�x,t�
�t

= K����D�x�p�x,t��
��x��

, �1�

where 1���2. Since the diffusion coefficient is just the
jumping frequency, the medium inhomogeneity enters the
problem via the x-dependent waiting time distribution. For
the Gaussian case ��=2�, all kinds of diffusion, both normal
and anomalous, are predicted �20� and they are determined
by the jumping frequency.

Equation �1� can be regarded as a special case of a more
general problem than the random walk and which traces back
to the microscopic foundations of nonequilibrium statistical
mechanics. The well-known achievement of Zwanzig �21�
was the derivation of the non-Markovian kinetic equation for
the probability distribution in the space of macroscopic-state
variables. More precisely, by starting from the Liouville–von
Neumann equation for the density operator �, i��� /�t
= �H ,��, where H is the Hamiltonian of the system, one can
obtain the generalized master equation

�P��t�
�t

= �
0

t

dt���t − t���
�

�F��P��t�� − F��P��t��� , �2�

where P� denotes the diagonal elements of the density matrix
and F�� are the transition rates �22�. Then the equation is
non-Markovian and it contains the memory kernel ��t�. Mar-
kovian equations like Eq. �1� follow from the generalized
master equation if memory effects are negligible. However,
usually this is not the case. We have already discussed ex-
amples of Lévy processes, with power-law tails of the distri-
bution, which exhibit memory effects. In fact, the importance
of these effects was realized a long time ago—e.g., in the
description of the resonance transfer of the excitation energy
between molecules �22�. The detailed calculation for the an-
thracene molecules shows that the memory kernel is expo-
nential and the generalized, nonlocal-in-time, master equa-
tion must be applied to get proper results for small times.
One can expect that memory effects are still more pro-
nounced for systems with the characteristic decay rate slower
than exponential, which often happens for atomic and mo-
lecular systems �23�. Stochastic dynamical processes are
generally nonlocal in time due to the finite time of the inter-
action with the environment. Moreover, for a stochastic sys-
tem which is coupled to a fractal heat bath via a random
matrix interaction �24�, finite correlations emerge and its re-
laxation has to be described in terms of the generalized, non-
Markovian Langevin equation, with the memory friction
term �25,26�. Also the speed of transport is affected by the
memory. In the non-Markovian CTRW processes it hampers
the dynamics and such systems are subdiffusive �27�. Such
processes are described by the generalized master equation,
with a memory kernel, if the waiting time distribution pos-
sesses long, algebraic tails. That equation follows directly
from the generalized Chapman-Kolmogorov equation which
determines the probability distribution in the phase space
�28,29�.

By applying the nearest-neighbor approximation to the
transition rates F�� and taking the continuum limit �22�, one
obtains from Eq. �2� the non-Markovian Fokker-Planck

equation. In the presence of long-range correlations, how-
ever, the nearest-neighbor approximation is no longer valid.
If the transition rates are symmetric and distributed accord-
ing to Lévy statistics in the continuum limit, the Kramers-
Moyal expansion produces a fractional derivative, instead of
a Gaussian. Then, for the variable diffusion coefficient D�x�,
the equation which corresponds to Eq. �2� becomes

�p��x,t�
�t

= �
0

t

K��t − t��Lx�p��x,t���dt�, �3�

where the operator

Lx = K� ��

��x��
D�x� �4�

acts only on the x variable. The parameter � measures the
rate of memory loss.

Equation �3� is of interest both from quantum and classi-
cal point of view. In the atomic and molecular physics—e.g.,
in a few-mode spin boson model �30� and random-matrix
theory �31�—where the decay rate is slow, an equation analo-
gous to Eq. �3� can be applied. The operator Lx is then ex-
pressed in terms of the “superoperator” which represents an
instantaneous intervention of the environment over the sys-
tem �23� and it can assume a quite general form. In the
classical context, Eq. �3� has been discussed in Ref. �32�; the
operator Lx has the Fokker-Planck form in this case, with a
constant diffusion coefficient and a potential force.

In this paper we study the diffusion problem for systems
which are driven by the Lévy-distributed transition rate and
for which both medium inhomogeneity and memory effects
are important. We assume D�x�= �x�−	�	
−1�. The power-
law form of the diffusion coefficient has been used to de-
scribe some physical phenomena—e.g., the transport of fast
electrons in a hot plasma �33� and turbulent two-particle dif-
fusion �34�. It is also used in theoretical analyses of the frac-
tional Fokker-Planck equation �35–38�—e.g., as an ansatz
for the problem of diffusion in fractal media �7–9,39�. Obvi-
ously, for the Markovian case K��t�=��t�, Eq. �3� resolves
itself to Eq. �1�.

In Sec. II we solve the fractional telegrapher’s equation
which follows from Eq. �3� for the case of the exponential
memory kernel K��t�. The solution for an arbitrary kernel,
expressed in the form of the Laplace transform, is derived in
Sec. III. Moreover, the case of the power-law kernel is
solved in details. In Sec. IV we derive the fractional mo-
ments and discuss their application to a description of the
diffusion process. The results presented in the paper are sum-
marized in Sec. V.

II. EXPONENTIAL KERNEL

If the memory effects are weak, we can assume that the
kernel K��t� decays exponentially. Then let us consider the
following kernel:

K��t� = �e−�t �� 
 0� , �5�

which becomes the � function in the limit �→� �the Mar-
kovian case�. In this case, the integral equation �3� reduces
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itself to a differential equation. It can be derived by inserting
Eq. �5� into Eq. �3� and by differentiating twice over time, in
order to get rid of the integral. Finally, we get the equation

�2p��x,t�
�t2 + �

�p��x,t�
�t

= K��
����x�−	p��x,t��

��x��
, �6�

which is a generalized and fractional version of the well-
known telegrapher’s equation. Originally, the telegrapher’s
equation, which is the hyperbolic one, was introduced into
the theory of stochastic processes by Cattaneo �40� in order
to avoid infinitely fast propagation for very small times. Its
fractional generalization describes, e.g., a two-state process
with correlated noise �41� and it predicts an inhanced diffu-
sion in the limit of long time. On the other hand, in the case
of the divergent second moment, the telegrapher’s equation
with Riesz-Weyl derivative results from the fractional Klein-
Kramers equation for the Lévy-distributed jumping size �29�.
In that equation, the parameter � has the sense of a damping
constant in the corresponding Langevin equation.

In the diffusion limit of small wave numbers, the Markov-
ian equation �1� is satisfied by the Fox function H2,2

1,1 �20�.
Since our main objective is to study the diffusion problem,
we restrict also the present analysis to that limit. We will try
to find the solution of Eq. �6� in the same form as for the
Markovian equation. Therefore we assume

p��x,t� = NaH2,2
1,1�a�x�	 	�a1,A1�,�a2,A2�

�b1,B1�,�b2,B2�

 , �7�

where the time dependence is restricted to the function a�t�
and N is the normalization constant. The method of solution,

described in Ref. �20�, consists in the insertion of the Fourier
transform of expression �7� into the Fourier-transformed
equation �6�. Then we determine the coefficients of the Fox
function by demanding that Eq. �6� be satisfied in the diffu-
sion limit—i.e., for small wave numbers. In fact, the latest
assumption does not introduce any additional idealization
since the equation itself is valid only in the diffusion limit.

We start with the Fourier transform of Eq. �6�; it reads

�2p̃��k,t�
�t2 + �

�p̃��k,t�
�t

= − K���k��F��x�−	p��x,t�� . �8�

The Fourier transform of the Fox function can be expressed
also in terms of the Fox function �for the definition and some
useful properties of the Fox functions see Ref. �20� and ref-
erences therein�. Due to the multiplication rule, the product
�x�−	p��x , t� is the Fox function as well. Both sides of Eq. �8�
can now be expanded in series of fractional powers of �k�. We
can satisfy Eq. �8� by a suitable choice of parameters of the
function �7� and by neglecting terms higher than �k��. The
results are the following. The expansion of the functions on
the left-hand side �LHS� and RHS, respectively, reads
p̃��k , t��1−Nh�a−��k�� and F��x�−	p��x , t���Nh0

�	�a	, with
the following coefficients: h0

�	�=2��+	� / �2+	� and h�

=−2
��+	�2

 ��−�����+	�cos�� /2�sin� �+	
2+	 �. The vanishing

of all other terms of order less than � is the necessary con-
dition to satisfy Eq. �8�. The solution takes the form

p��x,t� = NaH2,2
1,1�a�x� �1 −

1 − 	

� + 	
,

1

� + 	
�,�1 −

1 − 	

2 + 	
,

1

2 + 	
�

�	,1�,�1 −
1 − 	

2 + 	
,

1

2 + 	
� � , �9�

and the coefficients b1 and B1 are responsible for the distri-
bution behavior near x=0. b1 and B1 cannot be determined in
the diffusive limit, and they are meaningless from the point
of view of the diffusion process; the values 	 and 1 we have
assumed correspond to the jumping process, considered in
Ref. �20�. Generally, Eq. �3� is satisfied by the function �9�
for any choice of the coefficients b1 and B1
0, such that
b1→0 and B1→1 for 	→0. The normalization factor N
can be determined in a simple way from the formula N
= �2��−1��−1, where ��−s� is the Mellin transform of the Fox
function. A simple algebra yields

N = −


2
���1 + 	���−

	

� + 	
�sin� 	

2 + 	
�
−1

. �10�

Alternatively, since �k� is small, we can express the Fou-
rier transform of the solution as

p̃��k,t� � 1 − ���k�� � exp�− ���k��� , �11�

where

�� = K−�

�� + 	�2��− ����� + 	�cos��/2�sin�� + 	

2 + 	
�

��1 + 	���−
	

� + 	
�sin� 	

2 + 	
� a−�.

�12�

Equation �11� means that the solution of Eq. �3� coincides
with the Lévy process in the limit k→0. Then the solution
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�9� can be expressed in the form which is generic for any
symmetric Lévy distribution �42�:

p��x,t� =
1

��
H2,2

1,1�	�x�
�
	 �1 − 1/�,1/��,�1/2,1/2�

�0,1�,�1/2,1/2�

 .

�13�

Formula �12� establishes the relation between the solutions
�9� and �13�. Those expressions are equivalent only in the
limit k→0, and they behave differently for small �x�. We will
demonstrate in Sec. III that the Lévy process is the solution
of Eq. �3� for any kernel. Therefore, the form �13� is quite
universal and we apply it in the following. The problem is
reduced in this way to evaluating the function ��t�.

Now, Eq. �8� becomes the ordinary differential equation

1

�
�̈ = − �̇ + K�h0

�	�

h�

�−	/�, �14�

where ��t�=a−�. We assume the following initial conditions:

��0�= �̇�0�=0 which correspond to the condition p��x ,0�
=��x�. Equation �14� has the structure of the equation of
motion with a “friction term,” a positive “driving force,” and
a “mass” 1/�. The meaning of the quantity �, the time evo-
lution of which Eq. �14� describes, remains to be determined.

The variable �, as well as �̇, rises with time and finally the
balance of “forces,” given by the equation

�̇ − K�h0
�	�

h�

�−	/� = 0, �15�

is reached. Note that the above expression is equivalent to
Eq. �14� in the Markovian limit �→�. Therefore p��x , t�
= p��x , t�= p�x , t� for t→�. The solution of Eq. �15� pro-
duces the result

a�t� = �K�h0
�	�

h�
�1 +

	

�
�t
−1/��+	�

�t → �� , �16�

which corresponds to the exact solution �for arbitrary time�
for the Markovian limit, p�x , t�.

The case of the constant diffusion coefficient, 	=0, is a
particular case, and it can be solved easily. Solution of Eq.
�14� leads to the result

a�t� =
1

K
�−

1

�
�1 − e−�t� + t
−1/�

. �17�

For 	�0 and arbitrary time, Eq. �14� can be solved by
numerical integration and the distribution p��x , t� determined
from Eq. �13�. To evaluate the Fox function we use the gen-
eral formula for its series expansion and then Eq. �13� can be
expressed in the computable form

p��x,t� =
1

��
�
n=0

�
��1 + �2n + 1�/��

�2n + 1�!!
�− 1�n� x

�
�2n

. �18�

Figure 1 presents some exemplary probability distributions,
so chosen to illustrate the influence of memory on the time
evolution. Since the series �18� is poorly convergent, evalu-

ation of the distribution for large �x� required quadruple com-
puter precision �43�. The case with �=3 is close to the Mar-
kovian one; a comparison with the case characterized by
long memory shows that the spread of the distribution slows
down with a decreasing value of �—i.e., for stronger
memory �larger “inertia” in Eq. �14��. In the limit t→� the
curves which correspond to different � values and the same 	
coincide.

III. GENERAL CASE

The description by means of Eq. �3� with exponential
memory kernel does not apply to systems with long-time
correlations and small decay rate. In the study of realistic
systems one encounters a variety of forms of the kernel;
some of them are very complex. It is typical for natural sig-
nals that they do not represent a simple kinetics, character-
ized by a unique Hurst exponent. Random processes which
take into account the whole spectrum of the time-dependent
Hurst exponents serve then as useful models. This concept,
applied to the fractional equation formalism, leads to integra-
tion over the order of differentiation �the distributed-order
diffusion equation� �4� and the kernel assumes the integral
form �f���t−� d�. Reactions in polymer systems are also de-
scribed by using complicated kernels �44,45�. Therefore, in
this section we consider Eq. �3� for the case as general as
possible. We will demonstrate that the solution in a closed
form can be obtained for the arbitrary kernel.

Equation �3� has the structure of the Volterra integro-
differential equation with a kernel which depends on the dif-
ference of its arguments. Therefore, methods using Laplace
transforms are applicable. Following Sokolov �32�, we apply
a method of the integral decomposition which allows us to
express the required solution by solution of the correspond-
ing Markovian equation �1�. Let us define the function T�� , t�
by its Laplace transform

T���,u� =
1

K�
� exp�− �

u

K�
�� . �19�

If we know the function T�� , t�, the probability distribution
p��x , t� can be obtained by a simple integration:

0 20 40
|x|

0

0.01

0.02

0.03

0.04

0.05

p γ(x
,t)

θ=-0.2, γ=0.05
θ=-0.2, γ=3
θ=0.4, γ=0.05
θ=0.4, γ=3

FIG. 1. �Color online� Probability distributions for the case of
the exponential kernel with �=1.5, calculated from Eqs. �14�, �12�,
and �18�, for t=50. The initial condition is p��x ,0�=��x�.
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p��x,t� = �
0

�

p�x,��T��,t�d� . �20�

However, since inversion of Eq. �19� is difficult for any ker-
nel, it is expedient to get rid of T. To achieve that, we take
the Fourier transform from Eq. �20� and eliminate the func-
tion T�� , t� by using the definition �19�. The final solution is
of the form of the following Fourier-Laplace transform:

p̃�
��k,u� =

1

K�
� p̃��k,

u

K�
�� . �21�

The above formalism can be applied for any kernel K� and
any operator Lx; the main difficulty consists in inversion of
the Laplace transforms.

First of all, we find that if the Markovian process p�x , t� is
Lévy distributed in the diffusion limit k→0, then the non-
Markovian process is also the Lévy process in this limit.
Indeed, the Fourier transform of the Markovian solution is
given by Eq. �11�, where ��t� follows from Eqs. �12� and
�16�. Then we take the Laplace transform from that expres-
sion and insert the result into Eq. �21�: p̃�

��k ,u�=1/u
−F��u��k��. Finally, the inversion of the Laplace transform
yields

p̃��k,t� = 1 − F�t��k��, �22�

which is just the Fourier representation of the Lévy distribu-
tion for small �k�. To get the function F�t� we need to invert
the Laplace transform

F��u� =
Nh�

K�
��u�

�a−����u/K�
�� �23�

and we assume that this inverse transform exists. The solu-
tion is given by Eq. �13�, where ��t�= �F�t��1/�.

We will consider two particular cases in detail. In the case
of the exponential memory kernel �5�, discussed already in
Sec. II, we have K�

��u�=� / �u+�� and Eq. �21� produces the
result

p̃�
��k,u� =

1

u
− a0��1 + �����k��u−��+1��u + ��−�, �24�

where a0=Nh�
1−��K�h0

�	�� /��� and �=� / ��+	�. The above
expression cannot be inverted in closed form. However, if we
are interested only in large times, the last term in Eq. �24�
can be expanded around u=0: �u+��−���−�−��−��+1�u.
Then inversion of the Laplace transform yields

p̃��k,t� = 1 − a0�k���t� −
�2

�
t�−1� �t → �� �25�

and this expression demonstrates how the solution p�

approaches its asymptotic, Markovian form. The final
solution, valid for large t, is given by Eq. �13� with �

=�a0�t�− �2

� t�−1��1/�
.

The other physically important kernel has the power-law
form, with long tails,

K��t� =
t−�

��1 − ��
�0 � � � 1� . �26�

Equation �3� with the kernel �26� is usually presented as a
fractional equation with Riemann-Liouville derivative �46�—
which is equivalent to the Caputo operator for a special
choice of the initial conditions—in the form

�p��x,t�
�t

= 0Dt
�−1Lx�p��x,t�� . �27�

The power-law kernels are used to describe subdiffusive re-
laxation, e.g., in the framework of the CTRW �27�. They
emerge also as a result of the coupling to the fractal heat bath
via the random matrix interaction �24�. To solve Eq. �3� we
follow the same procedure as for the exponential kernel. The
Laplace transform of Eq. �26� reads K�

��u�=u�−1, and Eq.
�21� takes the form

p̃�
��k,u� =

1

u
− a0��1 + �����k��u−2�+��−1. �28�

The inversion can be easily performed:

p̃��k,t� = 1 −
a0����1 + ��

��2� − �� + 1�
�k��t2�−�� � 1 − F�t��k��.

�29�

Clearly, the above solution does not converge with time to
the Markovian asymptotics, F�t�� t�, in contrast to the case
of the exponential kernel.

To conclude this section, we want to mention yet another
approach to Eq. �3�, which is a direct generalization of the
method applied for the telegrapher’s equation in Sec. II. In-
serting the expansion of the functions p̃��k , t� and
F��x�−	p��x , t�� into Eq. �3� confirms the finding that the so-
lution can be expressed in terms of the Fox function H2,2

1,1 and
it is Lévy distributed. The resulting equation is a generaliza-
tion of Eq. �14�, and it determines the function ��t�:

d�

dt
= K�h0

�	�

h�
�

0

t

K��t − t���−	/� dt�. �30�

Mathematically, Eq. �30� has the form of the nonlinear Vol-
terra integro-differential equation. Since the numerical inver-
sion of the Laplace transforms is not always an easy task
�methods are often unstable�, numerical solution of Eq. �30�
could be a useful alternative to Eq. �22�.

IV. DIFFUSION

The diffusion process is usually characterized by the time
dependence of the second moment of the probability distri-
bution: if this dependence is linear in the limit of long time,
the diffusion is called normal. There are many examples of
physical systems for which the variance rises faster than lin-
early with time �hyperdiffusion� or slower �subdiffusion�.
Such behaviors are typical for transport in disordered media
�47� and systems with traps and barriers. In the realm of
dynamical systems, a substantial acceleration of the diffusion
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is caused by the presence of regular structures in the phase
space �48�. On the other hand, the subdiffusion appears in the
non-Markovian version of CTRW, as a result of a non-
Poissonian, power-law form of the waiting time distribution
�27�.

When we enter the field of Lévy processes, the situation
becomes more complicated. The stochastic variable performs
very long jumps and their size is limited only by the size of
whole system. As a result, the second moment, as well as all
moments of the order � or higher, is divergent. Mathemati-
cally, that follows from the fact that the tail of the Lévy
distribution is the power law ��x�−�1+��. Therefore, one can-
not describe the diffusion process in terms of the position
variance and some other quantity which could serve as an
estimation of the speed of transport is needed. One possibil-
ity is to consider still the second moment but with integration
limits restricted to a time-dependent interval �the walker in
the imaginary growing box� �49�. On the other hand, one can
derive fractional moments of order ���.

By derivation of the moments of the probability distribu-
tion p��x , t�, Eq. �13�, we utilize simple properties of the
Mellin transform from the Fox function

��x��� = 2�
0

�

x�p��x,t�dx =
2

�
����− � − 1�

=
2


��������1 −

�

�
�sin��/2� . �31�

Let us consider two quantities: the renormalized moment of
order �, defined by the expression

M� = lim
�→0+

���x��−�� =
2


������sin��/2� , �32�

where we applied the property ��x�→1/x for x→0, and
then the fractional diffusion coefficient D����t�= 1

��1+��
1
t M�.

In the Markovian case, defined by Eq. �1�, the coefficient
D��� is useful to classify the diffusion: for 	�0 it rises with
time, for 	
0 it falls, and it converges to a constant for 	
=0 �20�. That pattern is consistent with the diffusion proper-
ties, defined in the ordinary sense, of the Fokker-Planck
equation ��=2�. Therefore, in the following we will name all
kinds of the diffusion—the subdiffusion, the normal diffu-
sion, and the superdiffusion—according to the time depen-
dence of the coefficient D���.

We begin with the case of the exponential kernel. First we
realize that, since ��=Nh��, the renormalized moment M�

is directly related to the variable �: M�

= 2
Nh�����sin�� /2��. Therefore, interpretation of Eq.

�14� is straightforward: it describes the deterministic time
evolution of the moment M�. The diffusion properties of the
system remain unchanged, compared to the Markovian case,
because in the limit t→� both solutions coincide. However,
at small time the influence of the memory, which hampers
both the spread of the distribution and the relaxation to the
Markovian asymptotics, is visible. Figure 2 illustrates that

effect for three values of 	 which have different sign. The
asymptotic, Markovian limit is achieved first for the subdif-
fusive case 	=0.4.

For the case of the power-law kernel we calculate the
fractional diffusion coefficient by means of Eq. �32�; the
quantity ���t�=F�t� is given by Eq. �29�. We obtain

D����t� =
2a0����1 + ��

���� − �� + 1�
sin��/2�t2�−��−1

� t���1−��−	�/��+	�. �33�

The diffusion properties of the system follow directly from
the above formula. The influence of the parameter 	, which
quantifies the structure of the medium, is similar as in the
Markovian case �20�: the larger 	 is, the weaker is the diffu-
sion. For 	�0, there is clearly superdiffusion. For positive 	,
the diffusion becomes weaker with 	 and finally it turns into
subdiffusion; the critical value, which corresponds to the nor-
mal diffusion, is 	cr=��1−��. On the other hand, if 0�	
��, there is a critical value of � which separates the super-
diffusion from the subdiffusion: �cr=1−	 /�. For 	
� the
motion is always subdiffusive. The parameter � measures the
degree of time nonlocality; it is the largest if � approaches 0.
The diffusion speed grows if � diminishes because the sys-
tem behavior at large times becomes sensitive to the initial
stages of the evolution when the distribution spreads rapidly.
The latter conclusion shows that memory can influence the
diffusion in many ways: the non-Markovian CTRW predicts
the weakening of the diffusion, and it is just a consequence
of memory in the system �27�. However, in that case time
nonlocality invokes a trapping mechanism.

Note that the above properties, in particular the presence
of a transition from the subdiffusion to the superdiffusion
when changing the parameters of the system, still hold if one
considers some other fractional moment of order ���, in-
stead of the renormalized moment M�.

10 100 1000
t

0.1

1

D
(µ

) (t
)

FIG. 2. �Color online� The fractional diffusion coefficient for the
case of the exponential kernel with �=0.05 �solid lines� and �=3
�dashed lines�, as a function of time, obtained from numerical so-
lution of Eq. �14�. Results for three values of 	 are presented: 	=
−0.2 �upper lines for large t�, 	=0 �middle lines�, and 	=0.4 �lower
lines�; �=1.5.
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For any kernel K�, except for the � function and for the
exponential kernel, the time evolution of the moment M� is
governed by the nonlocal equation �30� and the diffusion
properties follow from its solution. In fact, looking for the
full solution may be avoided in some cases: the kind of dif-

fusion is already determined by the sign of the function �̈�t�
in the limit of long time.

V. SUMMARY AND DISCUSSION

We have studied the diffusion process for non-Markovian
systems with position-dependent diffusion coefficient, which
involves Lévy flights, and then the variance of the corre-
sponding probability distribution is infinite. The integral
equation for that problem contains the fractional Riesz-Weyl
operator and the time-dependent memory kernel; the diffu-
sion coefficient depends on the position in an algebraic, scal-
ing way. The equation has been solved in terms of the Fox
functions in the limit of small wave numbers. We have dem-
onstrated that this solution represents the Lévy process for
any memory kernel. The formal solution has been obtained

in closed form which involves the Laplace transform. The
inversion of that transform may be a difficult task for most of
the kernels and then numerical methods have to be applied.
Two forms of the kernel have been discussed in detail: the
exponential kernel, for which the problem resolves itself to
the generalized telegrapher’s equation, and power-law one,
which is equivalent to the fractional equation with both the
Riesz-Weyl operator and the Riemann-Liouville fractional
operator. For the exponential kernel, memory initially slows
down the spread of the distribution but asymptotically the
solution converges to that of the Markovian equation. The
case with a power-law kernel reveals much more interesting
behavior. There is an interplay among all ingredients of the
dynamics, in particular between the range of the memory �
and the inhomogeneity parameter 	, which can result in all
kinds of diffusion, both normal and anomalous. In order to
make that classification possible, we have introduced the
fractional diffusion coefficient, defined in terms of the renor-
malized moment of order �. This coefficient allows us to
maintain the standard terminology of the anomalous diffu-
sion also for the Lévy flights.
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